Question number	Answer	Notes	Marks
1 (a)		Ignore name and formula of compound	1
(i)	Na / sodium / Mg / magnesium	Accept aluminium If both name	
(ii)	Si / silicon / P / phosphorus / S / sulfur / CI / chlorine	and formula given both must be correct	1
		If both name and formula given both must be correct	
(b) (i)	[Mg] ²⁺ [:CI _x] [×CI:]	Allow electrons on brackets	3
	M1 correct electronic configuration for	Allow any combination of dots and crosses	
	magnesium ion and correct charge on ion	Allow 0 or 8 electrons in	
	M2 correct electronic configuration for both chloride ions	outer shell	
	M3 correct charges on both chloride ions		
(ii)	M1 electrostatic attraction/forces between ions	M3 indep	2
	M2 of opposite charge		
		accept positive	

(iii)	 M1 attraction (between ions) is strong M2 lots of ions (in structure) / giant structure / lattice / lots of/many bonds M3 (therefore) lot of (thermal/heat) energy required to overcome attraction / to break down the lattice 	and negative ions accept cations and anions M2 dep on M1 Accept attraction/forc es between oppositely charged ions for 1 mark only Reject references to atoms/molecul es/IMF for M1 and M2 Accept strong (ionic) bonding/strong (ionic) bonds	3
		Accept lot of (thermal/heat) energy required to break (ionic) bonds	
		If any reference to attraction between atoms/molecul es/electrons scores 0/3 If any reference to covalent	
(c)		bonding/covale nt structure/IMF scores 0/3 Correct answer with or without working scores 2 marks	2

	M1 mol Al = 20/3 (= 6.67)		
	M2 mass AI = (answer to M1 x 27) = 180 (g) OR M1 3 faradays give 1 mol OR 27 g / 30 faradays give 10 mol OR 270 g M2 20 faradays gives 180 (g)	M2 CQ on M1 eg 540 scores 1 mark 6.67 gives 180(.09) scores 2 marks 6.7 gives 180.9 = 181 scores 2 marks 6.66 gives 179.82 scores M2 only Accept any number of sig fig except 1	
1			I

Question number	Answer	Notes	Marks
2 a	potassium chloride solution + + + + + + + + + + + + + + + + + + +	 M1 both bungs inserted AND electrodes connected to battery M2 both tubes inverted over electrodes M3 solution placed in the voltameter and labelled as potassium chloride / KCI(aq) For M3, ignore all three liquid levels, except that the level in the voltameter must be above the bottoms of both tubes if present 	3
b	Polarity Equation -(ve) $(2H_2O + 2e^- \rightarrow H_2 + 2OH^-)$ +(ve) $2CI^- \rightarrow CI_2 + 2e^{(-)}$	M1 for 2Cl ⁻ → Cl ₂ + 2e ⁽⁻⁾ ACCEPT 2Cl ⁻ − 2e ⁽⁻⁾ → Cl ₂ M2 for -(ve) in top row AND +(ve) in bottom row ACCEPT negative and positive IGNORE cathode and anode	2
С	burns with a pop / squeak OR use burning/lit spill / use flame to see if pop/squeak	Must be reference to test and result Reference to spill/match with no indication of flame is not enough ACCEPT splint for spill REJECT reference to glowing spill/splint Ignore flame extinguished 'Squeaky pop test' alone is not sufficient	

	Question number		Answer	Notes	Marks
3	а		too reactive / very reactive	Accept words with equivalent meaning	1
			OR	eg highly	
			high in the reactivity series		
	b	o i B (stage 2)			1
		ii	calcium chloride / CaCl ₂	If both name and formula given, mark name only	1
		iii	(they / the ions) are mobile	Accept free to move Accept move to electrodes (allow even if incorrect electrodes) Accept ions break free from lattice/crystal Not just free Allow they/ions are delocalised	1
		iv	$2CI^- \rightarrow CI_2 + 2e^{(-)}$	Ignore references to conduction Accept $2CI^ 2e^{(-)} \rightarrow CI_2$	1

	Question number			Answer		Notes		ks
3	С	i	M1	Correct calculation of M _r (MgCl ₂)		Sample calculation:	2	
			M2	M1 x 2		M1 = 95		
						M2 = 190 (kg)		
						Accept 190 000 g		
						$M2$ CQ on $M1$ when $M1$ is a genuine attempt to calculate M_r (MgCl ₂)		
						Correct answer with no working scores 2		
	С		Aw	ard 2 marks for 4000				
			Aw	ard 1 mark if one error	error 2000 (wrong ratio for Mg and electrons)		2	
						working in grams instead of kilograms)		

	Question number			Answer	Notes	Marks
3	d		M1 Mix magnesium oxide and sulfuric acid (and heat)			
		M2 Use excess MgO		Use excess MgO		
			M3 Filter (before heating to remove some water)			
			M4	Heat (the solution) to remove some water / for a short period of time If heated to dryness, no M4 or M5		5
			M5	Leave to crystallise	Allow place in a <u>warm</u> oven (to evaporate the excess water) to form crystals	

Question number	Answer	Notes	Marks
4 a i	correct statement about connection between number of electrons and moles/molecules/amounts (of both gases) OR reference to number of moles/molecules being equal (in both equations)	eg same number of electrons give same numbers of moles eg equal moles of gases have equal volumes / volumes are proportional to numbers of moles	1
ii	(some/chlorine/it) is soluble / dissolves (in water / in the solution) OR (some/chlorine/it) reacts with water	Accept (some) oxygen also collected Reject chlorine reacts with graphite Ignore chlorine gas escapes Reject reacts with sodium chloride / reacts with sodium hydroxide	1
iii	M1 (solution) alkaline / pH greater than 7	Mark M1 and M2 independently Ignore basic Accept any value above 7 up to 14	2
	M2 (because) hydroxide ions / OH- (formed)	Accept sodium hydroxide formed	
b	M1 (result of litmus test) bleaches / goes white M2 (result of KI test) brown (solution) / black precipitate or equivalent	Ignore red as intermediate colour Accept decolourises / colourless Accept yellow and orange in place of brown Accept grey in place of black Ignore shades such as pale / dark Reject red / red-brown / purple / blue-black	2

Question number	Answer	Notes		
4 c i	to sterilise / disinfect (the water) OR to make it safe to drink	Accept kill bacteria / microbes / pathogens / microorganisms / (harmful) organisms / germs / viruses Ignore references to cleaning / purifying / bleaching / changing pH		
ii	H ₂ + Cl ₂ → 2HCl	Ignore state symbols	1	
iii	dissolve in / add to water	Accept mixing with water / bubbling through water / react with water / make aqueous Ignore adding to liquid	1	
	Total 9 m			

	Question number		Answer	Notes	Marks
5	а		decomposition / breakdown / breakup / splitting / chemical change by electricity / (electric) current / (flow of) electrons	Ignore specific examples that do not include key words (eg obtaining aluminium from its ore) Ignore separation / movement of ions Mark independently	2
	b		A = chlorine / Cl ₂ B = hydrogen / H ₂ C = sodium hydroxide / NaOH	Ignore CI Ignore H Ignore references to sodium chloride If both name and formula given, both must be correct, but ignore CI and H Award 1 mark for chlorine and hydrogen the wrong way round	3

	Question number		Answer	Notes	Marks
5	O	i	so that ions are mobile/can flow/free to move (in liquid) OR ions not mobile / cannot flow/ not free to move in solid	Accept Na ⁺ / Cl ⁻ in place of ions Ignore references to charged species and particles Reject references to moving electrons Reject no ions in solid Reference to solid can be implied (eg if not molten)	1
		ii	$2CI^- \rightarrow CI_2 + 2e^{(-)}$	M1 for Cl $^-$ on left and Cl $_2$ on right M2 for balancing, DEP on M1 correct Accept $-$ 2e $^{(-)}$ on LHS If neither M1 nor M2 awarded, then award 1 mark for Cl $^ \rightarrow$ Cl $+$ e $^{(-)}$ or 2Cl $^ \rightarrow$ 2Cl $+$ 2e $^{(-)}$	2

(Total for Question 5 = 8 marks)

	Ques			Ansv	ver		Accept	Reject	Marks
6	(a)		Solution	Negative electrode	Positive electrode	Substance left			1
			silver sulfate potassium nitrate	silver	oxygen	potassium nitrate	correct formulae throughout	O for oxygen	2
	(b)	(i)	platinum				carbon / graphite copper/ silver / gold / titanium		1
		(ii)	to increase its (electrical) conductivity / to make it a (better) (electrical) conductor / to lower its (electrical) resistance IGNORE references to carrying current / charge / adds hydrogen ions				to increase the concentration/numb er of ions		1
	(c)	(i)	Moles/amount of hydrogen (produced) = 2 x moles/amount of oxygen (produced)				number of molecules of hydrogen (produced) is twice that of oxygen	explanations based on atoms	1
		(ii)	IGNORE explanations based on forming water (some of the) oxygen dissolves in water/acid			(some of the) oxygen reacts with the (carbon) electrode/to form CO ₂ (which then dissolves)	oxygen reacts with water/(sulfuric) acid	1	
	(d)		M1 - number of		482 500 96 500 or 5				1
			M2 - $n(H_2) = \frac{1}{2} \times M1$ or 2.5 Final answer on its own without working scores 2				Incorrect units	'	
			riliai aliswei Oli	II2 OWII WILLI	out working s	6001 62 Z		Total	9